重积分的变量替换

·定理. 设变换\(x(u) = (x_1(u),\cdots,x_n(u)):D\to \Omega\)是两个可求体积的\(R^n\)有界闭区域之间的同胚映射,且各个偏导数都在包含D的区域上连续,在D上有\[\frac{\partial(x_1,\cdots,x_n)}{\partial(u_1,\cdots,u_n)}\ne 0.\]若\(f(x)\)在\(\Omega\)上可积,则有\[\iint\cdots\int_\Omega f(x_1,\cdots,x_n)dx_1\cdots dx_n =\]\[\iint\cdots\int_D f(x_1(u),\cdots,x_n(u))\cdot |\frac{\partial(x_1,\cdots,x_n)}{\partial(u_1,\cdots,u_n)}| du_1\cdots du_n.\]这里\(u = (u_1,u_2,\cdots ,u_n).\)

·一些常见的变量替换
(1) 极坐标变换:\[\begin{cases}x=r\cos\theta,\\ y = r \sin\theta. \end{cases}\]用\(J(r,\theta)\)表示在该点处的Jacobi行列式绝对值,以下类似。则\(J(r,\theta) = r.\)

(2) 柱坐标变换:\[\begin{cases} x=r\cos\theta,\\ y=r\sin\theta, \\z = z.\end{cases}\]\(J(r,\theta,z)=r.\)

(3) 球坐标变换:\[\begin{cases} x=r\sin\varphi\cos\theta,\\ y=r\sin\varphi\sin\theta, \\z = r\cos\varphi.\end{cases}\]\(J(r,\varphi,\theta)=r^2 \sin\varphi.\)

    所属分类:数学分析     发表于2022-01-26